TEST-03

MODERN ALGEBRA

Max. Marks - 60

TOPIC - Homomorphism, Class equation, Sylow's theorem.

INSTRUCTIONS:

1. Read all the questions carefully atleast two times.
2. In Part-A (single correct questions) each correct answer carry 02 marks and incorrect answer has negative marking -01.
3. In Part-B (multiple correct questions) each correct answer carry 03 marks and no negative marking for incorrect answer.

PART-A

1. How many onto homomorphism $f: Z_{16} \rightarrow Z_{4} \times Z_{2}$
(a) 8
(b) 4
(c) 2
(d) 1
2. $f: G_{1} \rightarrow G_{2}$ be a group homomorphism and $O\left(G_{1}\right)=$ $10, O\left(G_{2}\right)=25$. Then possible order of kernal of f is
(a) 1
(b) 2
(c) 3
(d) 4
3. The order of $\operatorname{Inn}\left(Z_{10}\right)$ is
(a) 10
(b) 2
(c) 1
(d) 0
4. If $f: D_{4} \rightarrow D_{4}$, then how many inner-automorphism
(a) 8
(b) 4
(c) 2
(d) 1
5. Let H and K are two subgroups of order 3 and 5 respectively. If order of G is 15 then
(a) $H \cap K=\{e\}$
(b) $H \cap K=K$
(c) $H \cap K=H$
(d) $H \cap K \neq\{e\}$
6. Which of the following can be class equation of group of order 10.
(a) $1+1+1+2+5$
(b) $1+2+2+5$
(c) $2+2+2+2+2$
(d) $1+1+2+2+2+2$
7. Consider $T: Z_{12} \rightarrow Z_{12}$ the number of inner-automorphism is equal to
(a) 1
(b) 2
(c) 4
(d) 12
8. The number of 5 -sylow subgroups in S_{6} is
(a) 16
(b) 6
(c) 36
(d) 1
9. The number of 5 -sylow subgroups in the group of order 45 is
(a) 1
(b) 2
(c) 3
(d) 4
10. Let G be a group of order 60 , then
(a) G is abelian
(b) G has subgroup of order 30
(c) G has subgroup of order $2,3,5$
(d) G has subgroup of order $6,10,15$
11. How many 17 -sylow subgroups are in Group of order 595
(a) 1
(b) 2
(c) 17
(d) 35
12. Which of the following number can be order of permutation σ of 11 symbols such that σ does not fix any symbol
(a) 15
(b) 18
(c) 28
(d) 30
13. Let H_{1} and H_{2} be two distinct subgroups of a finite group G, each of order 2. Let H be the smallest subgroup containing H_{1} and H_{2}. Then the order of H is
(a) always 2
(b) always 4
(c) always 8
(d) None
14. Total number of conjugate class in A_{5} is
(a) 4
(b) 5
(c) 8
(d) none of these
15. Let G be a simple group of order 168. Then the number of subgroups of G of order 7
(a) 1
(b) 7
(c) 8
(d) 28
16. Let G be a group of order 200 , then the number of subgroups of G of order 25 is
(a) 1
(b) 4
(c) 5
(d) 10
17. Let G be group or order 1225 , then G is
(a) abelian but not cyclic
(b) cyclic
(c) simple group
(d) none of the above
18. Number of Automorphism from D_{5} is
(a) 25
(b) 5
(c) 20
(d) 5.5 !
19. In the permutation group $S_{n}(n>4)$, if H is the smallest subgroup containing all 3 -cycles then, which one of the following is true
(a) Order of H is 2
(b) Index of H in S_{n} is 2
(c) H is abelian
(d) $H=S_{n}$
20. Let S_{9} be the group of all permutations of the set $\{1,2,3,4,5,6,7,8,9\}$. Then the total number of elements in S_{9} that commute with $\tau=(123)(4567)$ in S_{9} equals
(a) $9 \times 8 \times 7 \times 6 \times 5$
(b) 9 !
(c) 24
(d) none

PART-B

1. Consider the symmetric group S_{20} and it's subgroup A_{20}. Let H be a 7 -ssg of A_{20}. Pick the correct statement from below.
(a) $O(H)=7^{2}$
(b) H must be cyclic
(c) H is normal subgroup of A_{20}
(d) Any 7 -ssg of S_{20} is subgroup of A_{20}
2. Let a_{n} denote the number of those permutation σ on $\{1,2,3, \ldots$. such that σ is a product of disjoint cycle then.
(a) $a_{5}=50$
(b) $a_{4}=14$
(c) $a_{5}=40$
(d) $a_{4}=11$
3. Let G be a group if order 231 . Then the number of elements of order 11 is
(a) 1
(b) 10
(c) 11
(d) 21
4. For any prime p, consider the group $G=G L_{2}\left[Z_{p}\right]$. Then which of the followings are true
(a) G has an element of order p
(b) G has exactly one element of order p
(c) G has no p-ssg
(d) b and c are correct
5. Let S_{5} be the symmetric group. Then which of the following statements is false
(a) S_{5} contains a cyclic subgroup of order 6
(b) S_{5} contains a non-Abelian subgroup o order 8
(c) S_{5} does not contain a subgroup isomorphic to $Z_{2} \times Z_{2}$
(d) S_{5} does not contain a subgroup of order 7
6. G be a simple group of order n, then value of ' n ' can never be
(a) 27
(b) 60
(c) 125
(d) 360

Bonus Question: True or False
Q. S_{n} is isomorphic to a subgroup of A_{n+2}.
....Best wishes from V!vek Sahu....

