TEST-03

MODERN ALGEBRA

Date - Tuesday, 17may, 2022

Max. Marks - 60

TOPIC - Homomorphism, Class equation, Sylow's theorem.

INSTRUCTIONS:

- 1. Read all the questions carefully at least two times.
- 2. In Part-A (single correct questions) each correct answer carry 02 marks and incorrect answer has negative marking -01.
- 3. In Part-B (multiple correct questions) each correct answer carry 03 marks and no negative marking for incorrect answer.

PART-A

- 1. How many onto homomorphism $f: Z_{16} \to Z_4 \times Z_2$ (b) 4 (c) 2 (d) 1(a) 8
- 2. $f : G_1 \rightarrow G_2$ be a group homomorphism and $O(G_1) =$ $10, O(G_2) = 25$. Then possible order of kernal of f is (a) 1 (b) 2 (c) 3 (d) 4
- 3. The order of $Inn(Z_{10})$ is (a) 10 (b) 2 (c) 1 (d) 0
- 4. If $f: D_4 \to D_4$, then how many inner-automorphism (a) 8 (b) 4 (c) 2 (d) 1
- 5. Let H and K are two subgroups of order 3 and 5 respectively. If order of G is 15 then (a) $H \cap K = \{e\}$ (b) $H \cap K = K$ (c) $H \cap K = H$ (d) $H \cap K \neq \{e\}$
- 6. Which of the following can be class equation of group of order 10.

 - (a) 1 + 1 + 1 + 2 + 5 (b) 1 + 2 + 2 + 5(c) 2 + 2 + 2 + 2 + 2 (d) 1 + 1 + 2 + 2 + 2 + 2

- 7. Consider $T: Z_{12} \to Z_{12}$ the number of inner-automorphism is equal to
 - (a) 1 (b) 2 (c) 4 (d) 12
- 8. The number of 5-sylow subgroups in S_6 is (a) 16 (b) 6 (c) 36 (d) 1
- 9. The number of 5-sylow subgroups in the group of order 45 is
 (a) 1 (b) 2 (c) 3 (d) 4
- 10. Let G be a group of order 60, then
 - (a) G is abelian
 - (b) G has subgroup of order 30
 - (c) G has subgroup of order 2, 3, 5
 - (d) G has subgroup of order 6, 10, 15
- 11. How many 17-sylow subgroups are in Group of order 595 (a) 1 (b) 2 (c) 17 (d) 35
- 12. Which of the following number can be order of permutation σ of 11 symbols such that σ does not fix any symbol (a) 15 (b) 18 (c) 28 (d) 30
- 13. Let H₁ and H₂ be two distinct subgroups of a finite group G, each of order 2. Let H be the smallest subgroup containing H₁ and H₂. Then the order of H is
 (a) always 2
 (b) always 4
 (c) always 8
 (d) None
- 14. Total number of conjugate class in A_5 is (a) 4 (b) 5 (c) 8 (d) none of these
- 15. Let G be a simple group of order 168. Then the number of subgroups of G of order 7
 (a) 1 (b) 7 (c) 8 (d) 28
- 16. Let G be a group of order 200, then the number of subgroups of G of order 25 is
 - (a) 1 (b) 4 (c) 5 (d) 10

- 17. Let G be group or order 1225, then G is
 - (a) abelian but not cyclic (b) cyclic
 - (c) simple group (d) none of the above
- 18. Number of Automorphism from D_5 is (a) 25 (b) 5 (c) 20 (d) 5.5!
- 19. In the permutation group $S_n(n > 4)$, if H is the smallest subgroup containing all 3-cycles then, which one of the following is true
 - (a) Order of H is 2 (b) Index of H in S_n is 2
 - (c) H is abelian (d) $H = S_n$
- 20. Let S_9 be the group of all permutations of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Then the total number of elements in S_9 that commute with $\tau = (123)(4567)$ in S_9 equals (a) $9 \times 8 \times 7 \times 6 \times 5$ (b) 9! (c) 24 (d) none

PART-B

- Consider the symmetric group S₂₀ and it's subgroup A₂₀. Let H be a 7-ssg of A₂₀. Pick the correct statement from below.
 (a) O(H) = 7²
 - (b) H must be cyclic
 - (c) H is normal subgroup of A_{20}
 - (d) Any 7-ssg of S_{20} is subgroup of A_{20}
- 2. Let a_n denote the number of those permutation σ on $\{1, 2, 3, ...\}$ such that σ is a product of disjoint cycle then.

(a) $a_5 = 50$ (b) $a_4 = 14$ (c) $a_5 = 40$ (d) $a_4 = 11$

- 3. Let G be a group if order 231. Then the number of elements of order 11 is
 - (a) 1 (b) 10 (c) 11 (d) 21
- 4. For any prime p, consider the group $G = GL_2[Z_p]$. Then which of the followings are true

- (a) G has an element of order p
- (b) G has exactly one element of order p
- (c) G has no p-ssg
- (d) b and c are correct
- 5. Let S_5 be the symmetric group. Then which of the following statements is false
 - (a) S_5 contains a cyclic subgroup of order 6
 - (b) S_5 contains a non-Abelian subgroup o order 8
 - (c) S_5 does not contain a subgroup isomorphic to $Z_2 \ge Z_2$
 - (d) S_5 does not contain a subgroup of order 7
- 6. G be a simple group of order n, then value of 'n' can never be (a) 27 (b) 60 (c) 125 (d) 360

Bonus Question: True or False

Q. S_n is isomorphic to a subgroup of A_{n+2} .

....Best wishes from V!vek Sahu....